
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 318 (2008) 1154–1179

www.elsevier.com/locate/jsvi
On lateral response of structures containing a cylindrical liquid
tank under the effect of fluid/structure resonances

N.K.A. Attari, F.R. Rofooei�

Civil Engineering Department, Sharif University of Technology, Tehran, Iran

Received 7 January 2008; received in revised form 25 April 2008; accepted 1 May 2008

Handling Editor: C.L. Morfey

Available online 24 June 2008
Abstract

The lateral response of a single degree of freedom (SDOF) structural system containing a rigid circular cylindrical liquid

tank, under harmonic and earthquake excitations is considered. The governing differential equations of motion for the

combined system is derived considering the first 3 liquid sloshing modes (1,1), (0,1), and (2,1), under horizontal excitation.

The system is considered nonlinear due to the convective term of liquid acceleration and the nonlinear surface boundary

conditions, both caused by the inertial nonlinearity. The harmonic and seismic response of the system is investigated in the

neighborhood of 1:1 and 1:2 internal resonances between the SDOF system and the first asymmetric sloshing mode. These

resonance cases can be regarded as autoparametric if an internal resonance exists between the sloshing mode (1,1) and the

structural system, while the frequency of the external harmonic excitation is tuned to the system’s structural frequency. In

addition, the effect of system’s horizontal and vertical displacement on lateral components of acceleration as well as the

effect of sloshing wave amplitude on liquid-induced dynamic pressure is investigated. The numerical results illustrates the

efficiency of the liquid sloshing modes in reducing the seismic response of the structural system to a large extent,

particularly when the fundamental frequency of the system is close to the dominant frequency of the earthquake record.

Also, the increase in the Fourier amplitudes of the sloshing modes is an indication of energy transfer from structure to

liquid due to nonlinear interaction. Considering 3 sloshing modes shows that the amplitude of asymmetric liquid mode

(1,1) in some cases becomes smaller in comparison to the case with 1 mode, and the other sloshing modes absorb part of

the energy imparted from the SDOF system.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of using sloshing-induced hydrodynamic forces to control structural vibration has long been
recognized. It is known that shallow liquid in a container experiences traveling sloshing waves. Increasing the
depth of the liquid will transform them into a standing sloshing wave that vibrates in its fundamental mode.
The efficiency of the tuned liquid dampers (TLD) that use shallow liquid to perform, in controlling the lateral
response of structures has been studied analytically, numerically, and experimentally. Applications of TLD in
controlling the response of tall buildings were investigated by Chang and Gu [1] and Yamamoto and
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Kawahara [2]. Modi and Munshi [3] used a barrier for increasing the energy dissipation in a rectangular TLD
system. Fujino et al. [4] developed a model for rectangular TLD subjected to horizontal excitation using
shallow water wave theory. However, most of these studies did not recognize the nonlinear interaction
between the liquid and the supporting structure [5,6].

Dynamic response of elastic structural systems carrying liquid storage tanks has been extensively explored
during the last few decades. Shepherd [7] investigated the behavior of elevated water tanks under seismic
excitation. Ibrahim et al. examined the nonlinear interaction in elevated water tanks subjected to vertical and
horizontal sinusoidal ground motions in the neighborhood of internal resonances [8–12]. They showed that the
liquid sloshing modes and the vibrational modes of the elastic supporting structure were coupled through
inertial nonlinearity.

The inertial nonlinearity can be generated through the presence of concentrated or distributed masses.
Nonlinearity may appear in the governing partial differential equations of motion or in boundary conditions
or both. The free surface condition in liquids is considered to be a nonlinear boundary condition [13,14], as
well as the acceleration of the liquid particles that includes a nonlinear convective term.

Inertial nonlinearity could lead to internal resonance condition among the interacting modes whenPn
j¼1kjoj ¼ 0, in which kj is an integer and oj is the jth natural frequency of the coupled modes. Setting the

frequency of the external excitation equal to the fundamental frequency of the system (primary resonance)
causes the forced structural response under the external excitation to act as a parametric excitation for the
liquid. This is due to the coupling between the system’s displacement and the liquid sloshing modes. This type
of coupling is referred to as autoparametric resonance. Ibrahim et al. [10] showed that in the vertical motion of
a system (elevated water tank) under parametric resonance of the first normal mode, the system response have
the characteristics of a hard nonlinear system. But, when the second normal mode is parametrically excited,
the system behaves as a soft nonlinear model. They also showed that at combination resonances, the
equivalent linearized system is parametrically stable. Ibrahim and Li [11] observed that when the first normal
mode of the system is externally excited in horizontal direction, the system performs as a nonlinear soft model
with weak autoparametric resonance.

Different types of nonlinear interactions could exist for a liquid tank standing on an elastic structure. They
include the interaction of the liquid sloshing modes with the breathing and flexural modes of the tank [15–17],
the interaction between two sloshing modes [18,19], the interaction between tank’s breathing and flexural
modes [20], and the interaction of the liquid sloshing modes with the modes of supporting elastic structure
[8–12,21,22].

Ikeda and Nakagawa [23] considered the nonlinear interaction of the liquid sloshing in rectangular tanks
with a supporting elastic structure under horizontal excitation. They showed that for an elastic structure
carrying a rigid rectangular tank under vertical sinusoidal excitation, the frequency response curves vary from
soft to hard as the tank water depth decreases. In a similar study, Ikeda and Ibrahim observed that when the
central frequency of the excitation’s power spectral density (PSD) is close to the SDOF system’s natural
frequency, there is an irregular energy transfer between the structure and the liquid’s free surface motion [24].
Depending on the PSD of the external excitation, the liquid’s free surface experiences zero motion, uncertain
motion (intermittency), partially developed motion, and/or fully developed random motion. Considering the
excitation frequency as a control parameter, Ikeda and Murakami investigated the influences of the liquid
level and a detuning parameter on the theoretical resonance curves. They showed that the frequency response
curves depend on the liquid level and a small deviation of the tuning condition may cause amplitude and phase
modulated motions and chaotic vibrations [25].

Miles [18] studied the surface waves in cylindrical basin filled with an inviscid fluid. Using a variational
approach, he developed a nonlinear model with 3 coupled sloshing modes under harmonic excitation for a
system with weakly coupled free oscillation of liquid sloshing modes. Nayfeh [26,27] examined the same
model, obtaining the equations of the modal amplitudes of the surface modes. Holmes [28] investigated the
case of vertical excitation when the modal sloshing frequencies are in the ratio of 1:2.

Miles and Henderson [19] reviewed some of the studies on parametrically excited surface waves. The
interactions of surface waves in circular cylindrical tanks subjected to a parametric harmonic excitation
(onE2om) was considered by Nayfeh. He examined the modal interactions between these modes and
determined the periodically and chaotically modulated motions [13,27]. Furthermore, he investigated the 1:2



ARTICLE IN PRESS
N.K.A. Attari, F.R. Rofooei / Journal of Sound and Vibration 318 (2008) 1154–11791156
internal resonance in general systems and showed that for the case of onE2om and OEon, modal saturation
and energy transfer can take place from directly excited mode to the indirectly excited ones [13,29]. A
comprehensive literature survey is provided by Ibrahim et al. [30,31] regarding the liquid sloshing dynamics
and its application with or without the presence of various resonance cases.

In this study, the nonlinear interaction between a SDOF structural system carrying a circular cylindrical
liquid tank and the sloshing modes of the liquid is investigated. The SDOF system can be assumed as an
idealization of a multi-degree of freedom (MDOF) structural system considering its fundamental mode of
vibration. Response of this model under horizontal harmonic and earthquake excitations is studied using 1
and 3 sloshing modes in the neighborhood of 1:2 and 1:1 internal resonances. Also, the energy transfer from
the structural mode to the first unsymmetrical sloshing mode of liquid is investigated for this system.

2. Governing differential equations of motion

An elastic SDOF structural system is considered. A circular cylindrical liquid tank with fluid depth h and
radius R is placed on this structure. The liquid is assumed to be irrotational, non-viscous and incompressible.
The effect of wave breaking caused by severe excitation is not considered in this study. Also, an equivalent
linear viscous damping term is considered in the modal equations of motion of the liquid [30].

The Cartesian (x,y,z) and cylindrical (r,y,z) systems of coordinates are considered on the free surface of the
liquid, as it is shown in Fig. 1. The wave amplitude in any location (r,y) is represented by Z. The tank is
assumed to be rigid and the effects of the first 3 sloshing modes of the liquid are taken into account in this
study (Fig. 2).

The experimental investigations by Prize and Penny (1952) and Abramson (1965), as well as a number of
other analytical studies [21,24,25,30], emphasizes the importance of the liquid primary modes on lateral
response of the system. In other words, if the first asymmetric sloshing mode (1,1) be considered as the
primary mode being directly or indirectly excited, then the amplitude of the (0,1) and (2,1) sloshing modes
become of second order in comparison to the amplitude of first asymmetric mode. Therefore, the remaining
modes are at higher orders, and their effect can be neglected in the problem formulation. The orders of the
modal amplitudes of the liquid sloshing modes are:

a11 ¼ OðZÞ; a01 ¼ OðZ2Þ; a21 ¼ OðZ2Þ; amn ¼ OðZmÞ

a11 ¼ OðZÞ; a01 ¼ OðZ2Þ; a21 ¼ OðZ2Þ; amn ¼ OðZmÞ (1)
Z0

X0

Y0

η

h
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ΔX0
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Xg (t)··

Fig. 1. The SDOF structural system with the cylindrical tank.
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In which, amn and amn are the modal amplitudes of the liquid and the velocity potential function,
respectively. The (m) and (n) indicate the number of diametric nodal lines and the number of nodal concentric
circles, respectively, while Z is the liquid wave amplitude. If x0 denotes the lateral displacement of structure in
Cartesian system of coordinates, its polar system of coordinate representation becomes:

x0 ¼ x0ix ¼ x0 cos y ir � x0 sin y iy (2)

Then, the velocity of the rigid tank can be expressed as

n0 ¼
dx0

dt
¼ _x0 cos y ir � _x0 sin y iy (3)

The vertical displacement of the system d, due to its lateral displacement x0, is determined as, d ¼ 3x2
0=5L, in

which L is the structural system’s height [12]. Application of the Newton’s second law to a liquid particle in a
non-viscous liquid leads to:

r
dn
dt
¼ �rpþ rðg� €dÞ (4)

where r, P and n are the liquid’s density, pressure and velocity, respectively. The absolute and relative
velocities are related through the following equation:

dn
dt
¼

qn
qt
þ nrn (5)

The relative velocity of the liquid, qn/qt, is defined in the fixed system of coordinate. The relation between q

and n is in the form of:

1
2
rq2 ¼ n� ðr � nÞ þ nrn (6)

in which nrn is the convective acceleration of the liquid particle moving in the direction of motion with
velocity n. This acceleration is measured with respect to the moving system of coordinate of the particles,
where the value of q is equal to q ¼ jnj. Assuming an irrotational liquid for which r� n ¼ 0, leads to

1
2
rq2 ¼ nrn (7)

Then Eq. (4) becomes

qv

qt
þ

1

2
rq2

� �
¼ �
rP

r
þ ðg� €dÞ (8)
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If the velocity potential function be defined as v ¼ r ~j, then Eq. (8) may be re-written in the following form:

r
q ~j
qt

� �
þ

1

2
rq2 ¼ �

rp

r
þrð�ðg� €dÞzÞ (9)

so

r
q ~j
qt
þ

1

2
q2 þ

p

r
þ ðg� €dÞz

� �
¼ 0 (10)

Integrating Eq. (10) with respect to time gives

q ~j
qt
þ

1

2

q ~j
qr

� �2

þ
1

r2
q ~j
qy

� �2

þ
q ~j
qz

� �2
" #

þ
p

r
þ ðg� €dÞz ¼ C1ðtÞ (11)

The velocity potential function, ~j; can be divided into two parts as it is shown in Eq. (12). The first part, j0,
is related to the tank’s motion, while the second part, j, corresponds to the liquid’s relative motion with
respect to the tank

~j ¼ j0 þ j (12)

The velocity of the origin O in the coordinate system O-xyz with respect to the fixed coordinate system
O0-XYZ can be expressed as

vo ¼ rj0 ¼
qj
qr

ir þ
1

r

qj
qy

iy ¼ _x0 cos y ir � _x0 sin y iy (13)

Integrating Eq. (13) and partially differentiating that with respect to the parameter (t) yields:

qj
qt
¼ €x0r cos y (14)

Substituting Eq. (14) into Eq. (11), leads to

qj
qt
þ

1

2

qj
qr

� �2

þ
1

r2
qj
qy

� �2

þ
qj
qz

� �2
( )

þ
p

r
þ ðg� €dÞzþ €x0r cos y ¼ 0 (15)

In the above equation, the velocity potential j is replaced by jþ
R

C1ðtÞdt:
The governing differential equation for incompressible liquid is the Laplace equation:

r2j ¼ 0)
q2j
qr2
þ

1

r

qj
qr
þ

1

r2
q2j

qy2
þ

q2j
qz2
¼ 0 (16)

Also, the differential equation of the motion for the supporting SDOF system under the horizontal ground
acceleration €xgðtÞ becomes

m €x0 þ c _x0 þ kx0 ¼ FL �m €xgðtÞ �m
36

25L2
x0ðx0 €x0 þ _x2

0Þ

k ¼ ks � kf ¼ ks �
6

5L
mg (17)

where x0, m, ks, and c are the relative displacement, mass, stiffness and damping constant of the SDOF system,
respectively. kf is the stiffness reduction due to vertical displacement of structural mass and k is the effective
stiffness of the structure [32]. Also, FL represents the hydrodynamic force acting on the tank’s wall and can be
determined by integrating the liquid pressure distribution along the tank’s wall as following:

FL ¼

Z 2p

0

Z Z

�h

RPðr; y; z; tÞ
��
r¼R

cos y dydz ¼

Z 2p

0

Z 0

�h

RPðr; y; z; tÞ
��
r¼R

cos ydy dz

þ

Z 2p

0

Z Z

0

RPðr; y; z; tÞ
��
r¼R

cos ydydz ¼

Z 2p

0

Z 0

�h

RPðr; y; z; tÞ
��
r¼R

cos ydydz

þ

Z 2p

0

R ZPðR; y; 0Þ þ
Z2

2
PzðR; y; 0Þ þOðZ4Þ

� �
cos ydy (18)
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where R, h and Z are the tank’s radius, liquid elevation and the wave amplitude, respectively. Also, P(r,y,z,t) is
determined from Eq. (15).
3. Boundary conditions

Having assumed a rigid tank, the relative velocity of the fluid along the walls and at the bottom of the tank
becomes zero:

qj
qr

����
r¼R

¼ 0;
qj
qz

����
z¼�h

¼ 0 (19)

Also, the kinetic boundary condition at fluid surface requires the velocity of the fluid surface in the vertical
direction be equal to the vertical velocity of the fluid particle at the liquid surface

qn

qt
¼

qj
qz
�

qj
qr

qn

qr
�

1

r2
qj
qy

qn

qy
(20)

Since, in free surface (z ¼ Z) the pressure is equal to zero, thus

qj
qt
þ

1

2

qj
qr

� �2

þ
1

r2
qj
qy

� �2

þ
qj
qz

� �2
( )

þ ðg� €dÞZ ¼ €x0r cos y (21)

4. Non-dimensional equations

In order to solve Eqs. (15)–(17) with the related boundary conditions given by Eqs. (19)–(21), they were
non-dimensionalized using the following parameters:

x̄0 ¼
x0

R
; r̄ ¼

r

R
; M ¼ mþmL; z̄ ¼

z

R
; Z̄ ¼

Z
R
; h̄ ¼

h

R

m1 ¼
m

M
; m2 ¼

mLR

pMh
; j ¼

j
R2o11

; mL ¼ prR2h; l̄ ¼
L

R
; d̄ ¼

d
R

z ¼
c

Mo11
; k̄ ¼

k

Mo2
11

; p̄ ¼
p

rR2o2
11

; t ¼ o11t; t�mn ¼ lmnR

O ¼
O0

o11
; €̄xg ¼

€X g

MRo2
11

; f L ¼
FL

mRo2
11

; o ¼
omn

o11
; o11 ¼ 1 (22)

where mL and M are the liquid mass and total mass of the system, respectively. The parameter o11 is the first
asymmetrical liquid frequency given by

o2
11 ¼

g�11
R

tanh �11
h

R

� �
(23)

Also, O0 is the frequency of the external harmonic excitation and lmn is the nth positive root of the
derivative of the Bessel function, dJmðlmnrÞ=dr

��
r¼R
¼ 0. The parameters lmn and emn can be computed

numerically using any numerical software. The values of emn were determined as e01 ¼ 3.832, e11 ¼ 1.841
and e21 ¼ 3.05424. The obtained results are in good agreement with previous analytical and experimental
studies [30].

Using Eqs. (22) and (23), the non-dimensional differential equations become

rj2 ¼ 0)
q2j
qr̄2
þ

1

r̄

qj
qr̄
þ

1

r̄2
q2j

qy2
þ

q2j
qz̄2
¼ 0 (24)
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m1 €̄x0 þ z _̄x0 þ k̄x̄0 ¼ f l � €̄xgðtÞ �
36

25L2
x̄0ðx̄0 €̄x0 þ _̄x

2
0Þ

f l ¼ m2

Z 2p

0

Z 0

�h̄

p̄ cos y
��
r̄¼1

dz̄ dyþ m2

Z 2p

0

Z̄p̄ð1; y; 0Þ þ
Z̄2

2
p̄zð1; y; 0Þ

� �
cos ydy (25)

qj
qt
þ

1

2

qj
qr̄

� �2

þ
1

r̄2
qj
qy

� �2

þ
qj
qz

� �2
" #

þ p̄þ
z̄

�11 tanhð�11hÞ
� €̄dz̄ ¼ � €̄x0r̄ cos y (26)

with the boundary conditions

qj
qr̄

����
r̄¼1

¼ 0;
qj
qz̄

����
z̄¼h̄

¼ 0 (27)

qZ̄
qt
¼

qj
qz̄
�

qj
qr̄

qZ̄
qr̄
�

1

r̄2
qj
qy

qZ̄
qy

����
z̄¼Z̄

(28)

z̄ ¼ Z̄! p̄ ¼ 0

qj
qt
þ

1

2

qj
qr̄

� �2

þ
1

r̄2
qj
qz

� �2

þ
qj
qz

� �2
( )

þ
Z̄

�11 tanhð�11h̄Þ
� €̄dZ̄ ¼ � €̄x0r̄ cos y (29)
5. Solution to the governing differential equations

The solution to the Laplace equation given by Eq. (24) with the boundary conditions provided in Eq. (27) is

jðr; y; z; tÞ ¼
X1
m¼1

X1
n¼1

½amnðtÞ cos myþ bmnðtÞ sin my�Jmnð�mnrÞ
cos h½�mnðzþ hÞ�

cos hð�mnhÞ
(30)

The non-dimensionalizing symbol ‘‘�’’ for different parameters is removed for simplicity. From the linear
part of Eq. (28), Z becomes

Z ¼ ��11 tanhð�11hÞ
qj
qt
ðz ¼ 0Þ ) Z ¼

X1
m¼0

X1
n¼1

½amn cos myþ bmn sin my�Jmnð�mnrÞ (31)

Having assumed a circular cylindrical tank, the parameters bmn and amn have a phase difference of p/2. In
this study, the excitations as well as the effect of sloshing modes are assumed to be along the x-axis only.
Therefore, disregarding the secondary effects of internal resonance between x and y direction sloshing modes,
bmn and in a similar way, bmn can be excluded from the equations. Using these assumption and considering the
3 liquid modes of (1,1), (0,1) and (2,1), j and Z can be re-written as

j ¼ a11ðtÞ cos yJ1ð�11rÞ
cos h½�11ðzþ hÞ�

cos hð�11hÞ
þ a01ðtÞJ0ð�01rÞ

cos h½�01ðzþ hÞ�

cos hð�01hÞ

þ a21ðtÞ cos 2yJ2ð�21rÞ
cos h½�21ðzþ hÞ�

cos hð�21hÞ
(32)

Z ¼ a11ðtÞ cos yJ1ð�11rÞ þ a01ðtÞJ0ð�01rÞ þ a21ðtÞ cos 2yJ2ð�21rÞ (33)

in which, amn and amn are time-dependent variables that can be determined through satisfying the free surface
boundary conditions. Inserting Eqs. (32) and (33) into Eq. (25) for the structure and using the Fourier Dini
series (the general form of Fourier series) for r in €x0 r cos y leads to [30]:

r ¼ FnJ1ð�1nrÞ (34)
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where

F n ¼

RR

0 r2J1ð�1nrÞdrRR

0 rJ2
1ð�1nrÞdr

¼
2R

ð�21n � 1ÞJ1ð�1nRÞ
(35)

in Eq. (35), R and F1 are equal to 1 and 1.4386, respectively. Adapting the same notation used by Ibrahim and
Ikeda [24,25], as it is shown in Appendix A, one could obtain:

m1 €x0 þ z _x0 þ kx0 ¼ � €xgðtÞ �
36

25L2
x0ðx0 €x0 þ _x2

0Þ � pm2
�01�11
�201 � �

2
11

� �
ðc01 � c11Þ

dJ1ð�11rÞ

dr

dJ0ð�01rÞ

dr

�(

þ
�201c11 � �

2
11c01

�01�11

� �
J1ð�11ÞJ0ð�01Þ

�
a01a11 þ

�11�21
�211 � �

2
21

� �
1

2
ðc11 � c21Þ

dJ1ð�11rÞ

dr

dJ2ð�21rÞ

dr

�

þðc11 � c21ÞJ1ð�11ÞJ2ð�21Þ þ
1

2

�211c21 � �
2
21c11

�11�21

� �
J1ð�11ÞJ2ð�21Þ

�
a11a21 þ

J1ð�11Þc11

�211
_a11

þh €x0 þ
3

8
c11J3

1ð�11rÞa211 _a11 þ
3

8
J3
1ð�11rÞ

1

3
þ c2

11

� �
þ �211

dJ1ð�11rÞ

dr

� �2

J1ð�11Þ

 !
a11a2

11

)
r¼1

(36)

Expanding Eqs. (28) and (29) at Z ¼ 0 and using the same approach results in

_a11 þ
a11
c11

þ
2 €x0

ð�211 � 1ÞJ1ð�11Þ
þ

2

ð�211 � 1ÞJ1ð�11Þ
€xgðtÞ þ

36

25l2
x0ð _x

2
0 þ x0 €x0Þ

� �
�

6

5l
ð _x2

0 þ x0 €x0Þa11

�

þ g1101 �01�11a11a01 þ
1

2
g1121 �11�21a11a21 þU021

1 a11a21 þ K120
1 c01c11a11a01

þ
1

2
K021

1 c11c21a11a21 þ c01K120
1 _a01a11 þ c11K120

1 _a11a01 þ
1

2
c11K021

1 _a11a21

þ
1

2
c21K021

1 _a21a11 þ
3

4
�211c11G

1111
1 a2

11a11 þ
1

4
u040
1 c11a2

11a11 þ
3

4
�211c11K040

1 a2
11a11

þ
3

8
�211K040

1 _a11a211

�
cos yJ1ð�11rÞ þ _a01 þ

a01
c11

�
6

5l
ð _x2

0 þ x0 €x0Þa01 þ
1

4

�
�211g

011
0 a2

11 þ
1

4
U120

0 a2
11

þ
1

4
c2
11K120

0 a2
11 þ

1

2
c11K120

0 _a11a11

�
J0ð�01rÞ þ _a21 þ

a21
c11

�
6

5l
ð _x2

0 þ x0 €x0Þa21 þ
1

4
�211g

211
2 a2

11

�

�
1

4
U021

2 a2
11 þ

1

4
K021

2 c2
11a2

11 þ
1

2
c11K021

2 _a11a11

�
cos 2yJ2ð�21rÞ ¼ 0 (37)

_a11 � c11K020
1 a11 þ g1101 �01�11ða11a01 þ a01a11Þ þ

1

2
g1121 �11�21ða21a11 þ a11a21Þ

�

� �201K120
1 a01a11 � �211K120

1 a11a01 �
1

2
�211K021

1 a11a21 �
1

2
�221K021

1 a21a11

þU021
1 ða21a11 þ a11a21Þ þ

3

4
�211c11G

1111
1 a11a211 þ

1

4
U040

1 c11a11a211�
3

8
K040

1 c11�
2
11a11a211

�
cos yJ1ð�11rÞ

þ _a01 � c01K200
0 a01 þ

1

2
�211g

011
0 a11a11 �

1

2
�211K120

0 a11a11 þ
1

2
U120

0 a11a11

� �
J0ð�01rÞ

þ _a21 � c21K002
2 a21 þ

1

2
�211g

211
2 �211a11a11 �

1

2
�211K021

2 a11a11

�
�
1

2
U021

2 a11a11

�
cos 2y J2ð�21rÞ ¼ 0 (38)
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Equating the coefficients of J0(e01r), J1(e11r)cos y and J2(e21r)cos 2y to zero and using the following
assumptions:

a11; a11;x ¼ OðZÞ

a01; a21; a01; a21 ¼ OðZ2Þ

amn; amn ¼ OðZmÞ (39)

Would lead to the following non-dimensional governing differential equations of the system if one
eliminates all the terms higher than O(Z3):

ðm1 þ m2phÞ €x0 þ
36

25l2
x0ð _x

2
0 þ x0 €x0Þ þ z _x0 þ kx0 þ G2 _a11 þ G3a01a11 þ G4a11a21 þ G5a211 _a11 þ G6a11a211 ¼ � €xgðtÞ

(40)

_a11 þ G1 €x0 þ G1 €xgðtÞ þ
36

25l2
x0ð _x

2
0 þ x0 €x0Þ

� �
�

6

5l
ð _x2

0 þ x0 €x0Þa11 þ
1

c11

a11 þQ4 _a01a11

þQ5 _a11a01 þQ6 _a11a21 þQ7 _a21a11 þQ8 _a11a211 þQ9a01a11 þQ10a11a21 þQ11a2
11a11 ¼ 0 (41)

_a01 þ
1

c01

a01 þQ12 _a11a11 þQ13a2
11 �

6

5l
ð _x2

0 þ x0 €x0Þa01 ¼ 0 (42)

_a21 þ
1

c21

a21 þQ14 _a11a11 þQ15a2
11 �

6

5l
ð _x2

0 þ x0 €x0Þa21 ¼ 0 (43)

_a11 � c11a11 þQ16a01a11 þQ17a11a01 þQ18a11a21 þQ19a21a11 þQ20a11a211 ¼ 0 (44)

_a01 � c01a01 þQ21a11a11 ¼ 0 (45)

_a21 � c21a21 þQ22a11a11 ¼ 0 (46)

All the above coefficients are defined in Appendix B.
Eliminating the parameters a11, a01, a21 from Eqs. (40)–(46) and retaining the terms up to O(Z3), would

result in the following governing differential equations for the system:

€a01 þ o2
01a01 þ 2z0o01 _a01ðtÞ �

6

5l
ð _x2

0 þ x0 €x0Þc01a01 þ
Q21 þ c01Q12

c11

� �
a11 €a11

þ
Q21

c11

þ
Q13c01

c2
11

 !
_a211 þ ðQ21 þQ12c01ÞS6 €a11a211 þ ðQ21 þQ12c01ÞS2a11 €a01

þ ðQ21 þQ12c01ÞS3a11 €a21 þ ðQ21 þQ12c01ÞS6 þ S6Q21 þ
2S6Q13c01

c11

� �
a11 _a211

þ Q21S2 þ
2S2Q13c01

c11

� �
_a11 _a01 þ Q21S3 þ

2S3Q13c01

c11

� �
_a11 _a21 ¼ 0 (47)

€a21 þ o2
21a21 þ 2z2o21 _a21ðtÞ �

6

5l
ð _x2

0 þ x0 €x0Þc21a21 þ
Q22 þ c21Q14

c11

� �
a11 €a11

þ
Q22

c11

þ
Q15c21

c2
11

 !
_a211 þ ðQ22 þQ14c21ÞS6 €a11a211 þ ðQ22 þQ14c21ÞS2a11 €a01

þ ðQ22 þQ14c21ÞS3a11 €a21 þ ðQ22 þ c21Q14ÞS6 þQ22S6 þ
2S6Q15c21

c11

� �
a11 _a211

þ Q22S2 þ
2S2c21Q15

c11

� �
_a11 _a01 þ Q22S3 þ

2S3Q15c21

c11

� �
_a21 _a11 ¼ 0 (48)
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G0 €x0 þ
36

25l2
x0ð _x

2
0 þ x0 €x0Þ þ kx0 þ

G2

c11

€a11 þ z _x0 þ G2S2 €a01 þ G2S3 €a21 þ G2S6 €a11a11

þ G2S6 _a211 þ
G3

c01c11

þ ðS4 þ S7ÞG2

� �
_a01 _a11 þ

G4

c21c11

þ ðS5 þ S8ÞG2

� �
_a21 _a11

þ
G3Q21

c01c
2
11

þ
G4Q22

c21c
2
11

þ 2S9G2

 !
a11 _a211 þ G2S4 €a01a11 þ G2S5 €a21a11

þ G2S7 €a11a01 þ G2S8 €a11a21 þ G2S9 €a11a211 þ G5
a211 €a11
c11

þ G6
a11 €a

2
11

c2
11

¼ � €xgðtÞ (49)

€a11 þ o2
11a11 þ G1c11 €x0 þ 2z1 _a11ðtÞ þ G1c11 €xgðtÞ þ

36

25l2
x0ð _x

2
0 þ x0 €x0Þ

� �
�

6

5l
ð _x2

0 þ x0 €x0Þa11

þ c11S6 _a211 þ c11S2 €a01 þ c11S3 €a21 þ c11S6 €a11a11 þ
Q4

c01

þ S4

� �
c11a11 €a01

þ
Q21Q4

c01

þ
Q22Q7

c21

þQ8 þ c11S9

� �
€a11a211 þ ðQ5 þ S7c11Þ€a11a01 þ ðQ6 þ S8c11Þ€a11a21

þ
Q21Q4

c01

þ
Q22Q7

c21

þ
Q22Q10

c21c11

þ
Q11

c11

þ
Q9Q21

c01c11

þ 2S9c11

� �
a11 _a211 þ

Q7

c21

þ S5

� �
c11 €a21a11

þ
Q9

c01

þ c11ðS4 þ S7Þ

� �
_a01 _a11 þ

Q10

c21

þ c11ðS5 þ S8Þ

� �
_a21 _a11 ¼ 0 (50)

In order to consider the energy dissipation capacity of the sloshing modes, also viscous damping terms were
introduced to the modal equations of the liquid sloshing modes. The parameters S2–S9 are described in
Appendix C. Finally, Eqs. (47)–(50) can be numerically solved to determine the response of the SDOF
structural system and the amplitude of liquid sloshing modes.

Omitting the parameters related to the (0,1) and (2,1) sloshing modes as well as the effect of wave amplitude
Z on lateral dynamic pressure from Eqs. (49) and (50), would result in two simplified equations for the system
with 1 sloshing mode under lateral excitation. These simplified equations are in total agreement with those
provided by Ibrahim et al. in their previous work [10].

6. Numerical example

The derived differential equations of motion are numerically solved for harmonic and earthquake excitation
input at resonance cases 1:1 and 1:2. A parametric study is carried out using two liquid mass and two h/R

ratios, i.e., mL ¼ 0.02, 0.1M, h/R ¼ 1 and 0.5. The response of the elastic structure containing the liquid tank
for the cases with 3 and 1 sloshing modes is compared with those of the SDOF system alone. Consideration of
higher sloshing modes does not have any significant effect on the response of the system [30]. Therefore, the
results of 3-mode model will be used as a basis to determine the accuracy of the other approximate models.
The damping ratio of the SDOF system is considered to be 2%. Also, the modal damping ratio of the liquid
sloshing modes, e0, e1, and e2 are assumed to be 1%. Furthermore, the initial values used for different
parameters in this study are: (a01)0 ¼ (a21)0 ¼ x0 ¼ 0.001 and (a11)0 ¼ 0.005. The amplitude of the non-
dimensional external excitation is assumed to be 0.001 ( €̄xg ¼ 0:001 cos Ot). The MATLAB 7.0 software is
used to perform the numerical computation.

6.1. Harmonic excitation (resonance case 1:1)

In this case, the external harmonic excitation frequency, O, is assumed to be equal to both the system’s
natural frequency and the frequency of the first unsymmetrical liquid’s sloshing mode (o11 ¼ os ¼ O).
Figs. 3(a) and (c), present the lateral response of the structure (x) and the wave height Z at the tank’s wall for
the case of h/R ¼ 0.5 and ml ¼ 0.1M. Also, the response Fourier transforms and the liquid profile at the time
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Fig. 3. Structure with liquid tank, 3 sloshing modes case for harmonic excitation at 1:1 resonance, h/R ¼ 0.5, mL ¼ 0.1M: (a) structural

displacement, (b) Fourier amplitude of structural displacement, (c) wave amplitude Z, (d) Fourier amplitude of Z, and (e) liquid profile at

maximum wave height.
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of maximum wave height are shown in Figs. 3(b), (d) and (e). As Fig. 3(a) shows, unlike the SDOF system
alone, the structural response in system with liquid tank decays rapidly after achieving its peak. Fig. 4
illustrates the modal amplitude of the first 3 liquid sloshing modes and their Fourier amplitudes. Comparing
Figs. 3(c), (e) and 4, proves that the maximum wave height and the related liquid profile is dominated by the
effect of the first unsymmetrical sloshing mode for this mass ratio. Maximum response of the liquid modes and
the structural system are presented in Table 1 for four different cases. The results indicate that increasing the
mass ratio and decreasing h/R ratio improves the performance of the liquid tank in reducing the response of
the structural system. For the mass ratio mL ¼ 0.1M, the response of the structural system is reduced
significantly with a maximum around 10% of the peak response of the SDOF system alone. There is less
reduction in response of the system for the mass ratio mL ¼ 0.02M with its maximum displacement being
around 40% of SDOF system’s peak response. The energy transfer from the SDOF system to the liquid and
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Table 1

Harmonic excitation—resonance case 1:1 (o11 ¼ os ¼ O)

Structural model Maximum responsea Reduction (%)b Approximation (%)c

x Z a11 a01 a21 x Z a11

h/R ¼ 1 Structure with tank considering

3 sloshing modes

0.0038 0.0540 0.0873 0.0067 0.0045 84.8 – – –

mL ¼ 0.1M Structure with tank considering

1 sloshing mode

0.0038 0.0510 0.0877 – – 84.8 0.0 5.5 0.4

h/R ¼ 0.5 Structure with tank considering

3 sloshing modes

0.0028 0.0264 0.0432 0.0037 0.0029 88.8 – – –

mL ¼ 0.1M Structure with tank considering

1 sloshing mode

0.0028 0.0252 0.0433 – – 88.8 0.0 4.5 0.2

h/R ¼ 1 Structure with tank considering

3 sloshing modes

0.0103 0.1788 0.2498 0.0667 0.0229 58.8 – – –

mL ¼ 0.02M Structure with tank considering

1 sloshing mode

0.0081 0.2039 0.3495 – – 67.6 21.4 14.0 40.0

h/R ¼ 0.5 Structure with tank considering

3 sloshing modes

0.0085 0.1150 0.1623 0.1010 0.1128 66.0 – – –

mL ¼ 0.02M Structure with tank considering

1 sloshing mode

0.0070 0.1130 0.1940 – – 72.0 17.6 1.7 19.5

SDOF system 0.0250 – – – – – – – –

aResults are provided for the nondimensionalized parameters.
bThe reduction in the peak response of the structural model is determined with respect to the SDOF system.
cApproximation is determined with respect to the 3 modes sloshing model as the most accurate case.
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the shift in modal frequencies of the system with tank are considered as the dominant factors in reducing the
lateral response of the structure.

The displacement of the SDOF system, and the system containing liquid tank are compared in Fig. 5, for
the case of h/R ¼ 0.5 and ml ¼ 0.02M considering 1 and 3 sloshing modes. The results indicate that the liquid
tanks with this type of resonance can significantly reduce the response of system including its peak values.

In Fig. 6, the time history of the wave height Z at the tank’s wall are compared for the 1 and 3 sloshing mode
cases, assuming h/R ¼ 0.5 and ml ¼ 0.02M. As expected, the results provided in these figures and Table 1,
indicate that considering only 1 sloshing mode, in spite of its acceptable performance in certain cases, is not
generally adequate for capturing the true behavior of the system. The difference between the results of the 1
and 3 mode models can be up to 14% in determining the maximum wave height Z and up to 21% in
calculating the maximum structural displacement. That clearly shows the importance of the (0,1) and (2,1)
sloshing modes on the maximum wave height and/or peak structural response as it is shown in Figs. 5 and 6
for the 1:1 resonance case.
6.2. Harmonic excitation (resonance case 1:2)

Retaining the linear parts of Eqs. (49) and (50), and neglecting the nonlinear terms, the considered dynamic
system reduces to a simplified two degrees of freedom model. The vibrational frequencies of the new simplified
system include B3, which is mainly a structural mode, and B4, that is dominated by the (1,1) sloshing mode of
the liquid. These frequencies can be determined from the following equations:

B3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4B2

qr
ffiffiffi
2
p ; B4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4B2

qr
ffiffiffi
2
p (51)
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Fig. 5. Structural displacement for harmonic excitation at 1:1 resonance, h/R ¼ 0.5, mL ¼ 0.02M: (a) SDOF system, (b) structure with

liquid tank—1 sloshing mode, and (c) structure with liquid tank—3 sloshing modes.

N.K.A. Attari, F.R. Rofooei / Journal of Sound and Vibration 318 (2008) 1154–1179 1167



ARTICLE IN PRESS

0 50 100 150 200 250 300 350 400 450 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (Nondimensionalized)

η

0 50 100 150 200 250 300 350 400 450 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (Nondimensionalized)

η

Fig. 6. Wave amplitude Z for harmonic excitation at 1:1 resonance, h/R ¼ 0.5, mL ¼ 0.02M: (a) structure with liquid tank—1 sloshing

mode and (b) structure with liquid tank—3 sloshing modes.

N.K.A. Attari, F.R. Rofooei / Journal of Sound and Vibration 318 (2008) 1154–11791168
where B1 and B2 are defined as

B1 ¼
k þ G0

G0 � G1G2
; B2 ¼

k

G0 � G1G2
(52)

The parameters G0, G1 and G2 are given in Appendix B. In the (1:2) resonance case, the external harmonic
excitation frequency, O, and the system’s natural frequency os, are determined such that the frequencies of the
combined system (B3 and B4) to be in the form of B3 ¼ 2B4 ¼ O.

Inserting for G0, G1 and G2 in the above equations from Appendix B, G0�G1G2 and consequently the B1 and
B2 parameters become less than zero if mlD=1:3Mh

� 	
tanhð1:8h=RÞ41. Therefore, the modal eigenvalues of

the system will have a positive real part. It means that if those modes be excited directly or indirectly through
nonlinear interaction, the system response will increase with time and becomes unbounded. For example for
the case of h/r ¼ 0.5, if mL40.81M, then the system becomes unstable under external excitation frequencies
near to the modal frequencies of the system. For small h/r ratios (less than 0.1), traveling waves will be
generated. Also, under the severe external excitations, the wave amplitude Z may become larger than 0.75 h,
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Table 2

Harmonic excitation—resonance case 1:2 (2B4 ¼ B3 ¼ O)

Structural model Model parametersa Reduction

(%)b
Approximation

(%)c

x Z a11 a01 a21 x Z a11

h/R ¼ 1 Structure with tank considering 3

sloshing modes

0.0061 0.1086 0.1150 0.0594 0.0621 12.9 – – –

mL ¼ 0.1M Structure with tank considering 1

sloshing mode

0.0061 0.1250 0.2150 – – 12.9 0 15.1 87

h/R ¼ 0.5 Structure with tank considering 3

sloshing modes

0.0060 0.0633 0.0749 0.0427 0.0235 14.3 – – –

mL ¼ 0.1M Structure with tank considering 1

sloshing mode

0.0060 0.0966 0.1660 – – 14.3 0 52.6 99.8

h/R ¼ 1 Structure with tank considering 3

sloshing modes

0.0062 0.2025 0.2309 0.1023 0.1294 11.4 – – –

mL ¼ 0.02M Structure with tank considering 1

sloshing mode

0.0062 0.1280 0.2200 – – 11.4 0 36.8 4.7

h/R ¼ 0.5 Structure with tank considering 3

sloshing modes

0.0062 0.1173 0.1417 0.0784 0.0578 11.4 – – –

mL ¼ 0.02M Structure with tank considering 1

sloshing mode

0.0062 0.1251 0.2150 – – 11.4 0 11.7 83

SDOF system – – – – – – – –

aResults are provided for the nondimensionalized parameters.
bThe reduction in the peak response of the structural model is determined with respect to the SDOF system.
cApproximation is determined with respect to the 3 modes sloshing model as the most accurate case.
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leading to wave breaking phenomenon. In that case, the derived governing differential equations of motion
lose their credibility to be used in this study.

Maximum responses of the liquid sloshing modes and the structural system are presented in Table 2 for
different h/R and mL ratios at the 1:2 resonance case. Fig. 7 shows the response of the structure and the wave
height Z at the tank walls and their Fourier amplitudes for the case of h/R ¼ 0.5 and mL ¼ 0.1M. As it is
shown, the structural response decreases appreciably in time (time is non-dimensionalized) after going through
its peak value, meaning an increase in energy transfer to liquid with time. Fig. 7(b) shows the Fourier
amplitude of the structural responses that have two major peaks at system’s natural frequency and liquid’s
first asymmetric modal frequency. This means that even if the liquid is not excited directly, due to nonlinear
interaction between the liquid and the structure, energy transfer from the structure to liquid is taking place
causing an increase in liquid response with time. Therefore, the response of the structure as Fig. 7(a)
illustrates, would be decreasing.

Fig. 7(e) shows the liquid profile as the wave amplitude Z achieves its maximum value. As this figure shows,
the liquid profile for the case with 3 sloshing modes is completely different from its asymmetric shape for the
case with 1 sloshing mode. That clearly indicates the importance of considering more number of sloshing
modes in determining the liquid’s profile. However, the location of the maximum wave height (Z) still remains
at the boundaries of the tank.

The modal amplitude of 3 liquid sloshing modes and their Fourier amplitudes for the above case are shown
in Fig. 8. As this figure presents, the effect of (0,1) and (2,1) sloshing modes on the amplitude of liquid wave Z
are considerably increased. This effect for models with mL ¼ 0.1M and smaller h/R ratios are more
considerable.

Figs. 9 and 10 compare the lateral response of the SDOF system and the system equipped with liquid tank,
as well as the wave height Z at the tank’s boundary, for the 1 and 3 sloshing modes cases. These figures show
that the case with 1 sloshing mode can appropriately estimate the peak response of the system, but it does not
provide a good estimate of the decay in system response with time.
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Fig. 7. Structure with liquid tank, 3 sloshing modes case for harmonic excitation at 1:2 resonance, h/R ¼ 0.5, mL ¼ 0.1M: (a) structural

displacement, (b) Fourier amplitude of structural displacement, (c) wave amplitude Z, (d) Fourier amplitude of Z, and (e) liquid profile at

maximum wave height.
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Fig. 9. Structural displacement for harmonic excitation at 1:2 resonance, h/R ¼ 1, mL ¼ 0.1M: (a) SDOF system, (b) structure with liquid

tank—1 sloshing mode, and (c) structure with liquid tank—3 sloshing modes.
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6.3. Earthquake excitation (resonance case 1:1)

All previous cases are considered in this example. The El-Centro earthquake excitation is used as an input to
the system for the resonance case of o11 ¼ os. The dominant frequency of the earthquake record was tuned to
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mode and (b) structure with liquid tank—3 sloshing modes.

Table 3

El-Centro earthquake excitation, resonance case 1:1 (o11 ¼ os)

Structural model Maximum responsea Reduction

(%)b
Approximation

(%)c

x Z a11 a01 a21 x Z a11

h/R ¼ 1 Structure with tank considering 3

sloshing modes

0.0253 0.2083 0.2856 0.0936 0.0231 41 – – –

mL ¼ 0.1M Structure with tank considering 1

sloshing mode

0.0256 0.1915 0.329 – – 40.2 1.2 8.1 15.2

h/R ¼ 0.5 Structure with tank considering 3

sloshing modes

0.0254 0.1289 0.1797 0.0495 0.0108 40.7 – – –

mL ¼ 0.1M Structure with tank considering 1

sloshing mode

0.0256 0.1914 0.329 – – 40 1 49 83

h/R ¼ 1 Structure with tank considering 3

sloshing modes

0.0324 0.3852 0.4137 0.2507 0.4328 24.3 – – –

mL ¼ 0.02M Structure with tank considering 1

sloshing mode

0.0337 0.4458 0.7575 – – 21.3 4 16 83

h/R ¼ 0.5 Structure with tank considering 3

sloshing modes

0.031 0.2446 0.3397 0.2237 0.1862 27.6 – – –

mL ¼ 0.02M Structure with tank considering 1

sloshing mode

0.0282 0.296 0.5087 – – 34.1 9 21 49.7

SDOF system 0.0428 – – – – – – – –

aResults are provided for the nondimensionalized parameters.
bThe reduction in the peak response of the structural model is determined with respect to the SDOF system.
cApproximation is determined with respect to the 3 modes sloshing model as the most accurate case.
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Fig. 11. El-Centro earthquake excitation at 1:1 resonance case, h/R ¼ 1, mL ¼ 0.1M: (a) structural displacement of SDOF system,

(b) structural displacement of structure with liquid tank—3 sloshing modes, and (c) wave amplitude of structure with liquid tank—3

sloshing modes.
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be near to the resonance frequency of the system through adjusting the time step intervals of the earthquake
record. Table 3 shows the maximum response of the SDOF system alone and the system containing liquid
tank with h/R ¼ 1 and mL ¼ 0.1M ratios. It seems that at the resonance case, 1:1, system efficiency even for
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Table 4

El-Centro earthquake, excitation—resonance case 1:2 (2B4 ¼ B3)

Structural model Maximum responsea Reduction

(%)b
Approximation

(%)c

x Z a11 a01 a21 x Z a11

h/R ¼ 1 Structure with tank considering 3

sloshing modes

0.0096 0.1169 0.1771 0.0469 0.0563 10.3 – – –

mL ¼ 0.1M Structure with tank considering 1

sloshing mode

0.0094 0.1017 0.1748 – – 12.15 2.1 13 1.3

h/R ¼ 0.5 Structure with tank considering 3

sloshing modes

0.01 0.0902 0.1339 0.0446 0.0245 6.6 – – –

mL ¼ 0.1M Structure with tank considering 1

sloshing mode

0.0101 0.0795 0.1366 – – 5.6 1 11.9 2

h/R ¼ 1 Structure with tank considering 3

sloshing modes

0.0094 0.1315 0.1774 0.0672 0.0902 12.2 – – –

mL ¼ 0.02M Structure with tank considering 1

sloshing mode

0.0094 0.1683 0.0979 – – 12.2 0 25.5 5

h/R ¼ 0.5 Structure with tank considering 3

sloshing modes

0.0094 0.0889 0.1359 0.0512 0.0369 12.15 – – –

mL ¼ 0.02M Structure with tank considering 1

sloshing mode

0.0095 0.075 0.1289 – – 11.2 1.1 15.6 5.2

SDOF system 0.0107 – – – – – – – –

aResults are provided for the nondimensionalized parameters.
bThe reduction in the peak response of the structural model is determined with respect to the SDOF system.
cApproximation is determined with respect to the 3 modes sloshing model as the most accurate case.
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earthquake excitation input is considerably improved in terms of maximum response reduction. The
decreasing trend of response with respect to time is also acceptable in this case (Fig. 11).

6.4. Earthquake excitation (resonance case 1:2)

Table 4 shows the system’s maximum response to the El-Centro earthquake excitation for the internal
resonance case of B3 ¼ 2B4 (2o11Eos). Also, the response time history of the SDOF system and the system
with tank for h/R ¼ 1 and mL ¼ 0.1M ratios are shown in Fig. 12. As this figure shows, in case of 1:2
resonance a large amount of energy is transferred from structure to liquid under the earthquake excitation.
Also, one could observe the considerable frequency content of the structural response around the sloshing
mode’s frequency of the liquid.

7. Conclusion

The governing differential equations of motion of an elastic SDOF structural system carrying a liquid
cylindrical tank are derived. These equations are numerically solved for the harmonic and earthquake
excitation input at internal resonance cases 1:1 and 1:2. The response of system containing the liquid tank for 3
and 1 sloshing mode cases are compared with those for the case of SDOF system alone. A parametric study is
carried out for different liquid mass mL and h/R ratios. According to the obtained results, reducing h/R ratio
and increasing mL both will improve the performance of the liquid tanks in reducing the structural response
caused by the external harmonic and earthquake excitations. On the other hand, it was shown that considering
only 1 sloshing mode is not adequate for estimating the lateral structural response and maximum wave height.
In the internal resonance case 1:2, for very large values of mL, the system becomes unstable under external
excitation frequencies near to the modal frequencies of the system. Also, for very small h/r ratios, traveling
wave will be generated. Energy transfer from the structure to liquid and the shift in modal frequencies of the
system are considered as the dominant factors in reducing the response of the system. As the Fourier
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Fig. 12. El-Centro earthquake excitation at 1:2 resonance case, h/R ¼ 1, mL ¼ 0.1M: (a) structural displacement of SDOF system,

(b) structural displacement of structure with liquid tank—3 sloshing modes, and (c) Fourier amplitude of structural displacement for

structure with liquid tank—3 sloshing modes.
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amplitude of the structural response indicates, even if the liquid is not excited directly, due to nonlinear
interaction between the liquid and the structure, energy transfer from the structure to liquid would take place
causing an increase in liquid’s response while reducing the response of the structural system.
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